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Abstract

Since the pioneering work of Youngren and Acrivos [G.K. Youngren, A. Acrivos, On the shape of a gas bubble in a
viscous extensional flow, J. Fluid Mech. 76 (1976) 433–442] 30 years ago, interfacial dynamics in Stokes flow has been
implemented through explicit time integration of boundary integral schemes which require that the time step is sufficiently
small to ensure numerical stability. To avoid this difficulty, we have developed an efficient, fully-implicit time-integration
algorithm based on a mathematically rigorous combination of implicit formulas with a Jacobian-free three-dimensional
Newton method. The resulting algorithm preserves the stability of the employed implicit formula and thus it has strong
stability properties, e.g. it is not affected by the Courant condition or by physical stiffness such as that associated with
the critical conditions of interfacial deformation. In our work, the numerical solution of our implicit algorithm is achieved
through our spectral boundary element method. Our numerical results for free-suspended droplets are in excellent agree-
ment with experimental findings, analytical predictions and earlier computational results at both subcritical and supercrit-
ical conditions, and establish the properties of our fully-implicit spectral boundary element algorithm.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Interfacial dynamics in Stokes flow via the solution of boundary integral equations has developed consid-
erably since the pioneering work of Youngren and Acrivos [37] 30 years ago. The main benefit of this
approach is the reduction of the problem dimensionality by one, e.g. a fully three-dimensional problem can
be described and solved by employing only two (curvilinear) coordinates. Extensive research has been done
to determine and understand the deformation of droplets and bubbles in external flows, both in infinite media
as well as in constrained geometries [26,30,32]. Considerable progress has also been made in the study of mem-
brane-like interfaces such as those in artificial capsules and biological cells [26,27]. During the last few years
the interaction of deformable interfaces, e.g. suspensions of droplets, has received a great deal of interest [39].
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To study these systems, several numerical methodologies have been developed which have one common
characteristic, i.e. the fact that they employ explicit time-integration schemes for the determination of the
interfacial deformation, e.g. see [9,19,29,38]. While these schemes are straightforward to employ, they require
that, to ensure numerical stability, the employed time step must be smaller than any (numerical or physical)
time scale appearing in the computational problem. The smallest time scale is commonly of numerical nature,
associated with the numerical discretization owing to the well-known Courant condition [9,19,29,38,40]. (The
exact form of this condition is given later in Section 3.)

This shortcoming of the explicit interfacial algorithms results in a large number of unnecessary time steps
without any gain in accuracy. To avoid this, a typical implicit scheme based on the numerical calculation of
the associated Jacobian matrix may allow for large time steps; however, its implementation to realistic prob-
lems is prohibited due to the large cost of determining numerically the expensive Jacobian matrix.

To overcome this difficulty, we have developed an efficient, fully implicit, time-integration algorithm for
interfacial dynamics in Stokes flow. Our method is based on a mathematically rigorous combination of impli-
cit schemes with our Jacobian-free three-dimensional Newton method [12], and thus it has strong stability
properties which permits the utilization of very large time steps.

After the mathematical formulation of multiphase flows in the Stokes regime presented in Section 2, and a
short review of the boundary integral solution via explicit time integration in Section 3, in Section 4 we present
the mathematical formulation of our implicit interfacial method. Section 5 provides a summary of the spectral
boundary discretization employed in our implicit method. In Section 6 we present the properties of the implicit
interfacial method including comparisons with previous studies. Section 7 considers the time evolution of free-
suspended droplets in subcritical and supercritical planar four-roll mill flows; as shown in this section, our
numerical results are in excellent agreement with experimental findings [4,16], and establish the properties
of our fully-implicit algorithm.

The present fully-implicit algorithm constitutes a new approach for interfacial dynamics in Stokes flow
while it can be employed for a wide range of interfacial problems in porous media, microfluidic devices
and physiological systems which are expected to continue having a significant growth in the coming years
due to the increased interest in small scales [27,33].

2. Mathematical formulation

We consider a three-dimensional droplet suspended in an infinite fluid; the droplet (fluid 1) has density q1

and viscosity kl while the surrounding fluid (fluid 2) has density q2 and viscosity l. The droplet size is specified
by its volume V or equivalently by the radius a of a spherical droplet of volume 4pa3=3 ¼ V . The gravitational
acceleration is g while the surface tension c is assumed constant. Far from the droplet, the flow approaches the
undisturbed flow u1, e.g. a planar extensional flow u1 ¼ Gðx;�y; 0Þ or a simple shear flow u1 ¼ Gðz; 0; 0Þ,
where G is the shear rate. In this study, the characteristic length a is used as the length scale while the time
is scaled with the flow time scale sf ¼ G�1.

The capillary number Ca and Bond number Bd are defined by
Ca ¼ lGa
c
; Bd ¼

ðq1 � q2Þga2

c
ð1Þ
These dimensionless parameters represent the ratio of viscous flow forces and gravitational forces to interfa-
cial forces, respectively.

The governing equations in fluid 2 are the Stokes equations together with continuity
$ � r ¼ �$p þ lr2u ¼ 0 ð2Þ
$ � u ¼ 0 ð3Þ
while in the droplet, the same equations apply with the viscosity replaced by kl.
At the interface, the boundary conditions on the velocity u and surface stress f are
u1 ¼ u2 ð4Þ
Df ¼ f 2 � f 1 ¼ cð$ � nÞnþ ðq2 � q1Þðg � xÞn ð5Þ
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Here the subscripts designate quantities evaluated in fluids 1 and 2, respectively. The surface stress is defined as
f ¼ r � n where n is the unit normal which we choose to point into fluid 2. The pressure as defined in r is the
dynamic pressure; hence the gravity force is absent from Eq. (2) and appears in the interfacial stress boundary
condition, Eq. (5).

The time evolution of the interfacial shape may be determined via the kinematic condition at the interface
dx

dt
¼ ðu � nÞn ð6Þ
if the interfacial shape is known at some time instance.
Although the governing equations and boundary conditions are linear in u and f, the problem of determin-

ing the dynamic droplet shape constitutes a non-linear problem, i.e. the velocity u, stress f and curvature $ � n
are non-linear functions of the geometrical variables describing the interface shape.

3. Explicit time integration

Since the pioneering work of Acrivos and coworkers [28,37], a common way to solve the interfacial problem
presented in Section 2, is by transforming the partial differential equations, Eqs. (2) and (3), into boundary
integral equations, and utilizing an explicit time-integration scheme for the determination of the interfacial
evolution. The main benefit of this transformation is the great reduction in computational time since a fully
three-dimensional problem can be described and solved using only two (curvilinear) coordinates.

For a given droplet surface SB, the velocity at a point x0 on the interface may be determined via the bound-
ary integral equation [25]
ð1þ kÞuðx0Þ � 2u1ðx0Þ ¼ �
1

4pl

Z
SB

½S � Df � ð1� kÞlT � u � n�ðxÞdS ð7Þ
where Sij is the fundamental solution for the three-dimensional Stokes equations and T ijk the associated stress
defined by
Sij ¼
dij

r
þ x̂ix̂j

r3
; T ijk ¼ �6

x̂ix̂jx̂k

r5
ð8Þ
where x̂ ¼ x� x0 and r ¼ jx̂j [25]. Similar equations hold in the presence of solid boundaries and for drop/cell
suspensions [12,39].

In order to determine the droplet shape as a function of time, an explicit time-integration scheme may be
employed to solve the kinematic condition at the interface, Eq. (6), e.g. [3,19,20,38]. However, the employed
time step Dt should be sufficiently small to ensure numerical stability; in particular Dt must be smaller than any
(numerical or physical) time scale appearing in the computational problem. The strictest requirement is com-
monly of numerical nature (i.e. associated with the numerical grid), the well-known Courant condition which
in dimensionless form may be written as
Dt < OðCaDxminÞ ð9Þ

where Dxmin is the minimum length scale appearing in the computational problem, e.g. the minimum grid spac-
ing or the distance between interfaces in close contact [9,19,29,38,40]. (For gravity-only induced deformation,
the time step should be reduced as the Bond number decreases [11].) This shortcoming of the explicit interfa-
cial algorithms results in a large number of unnecessary time steps without any gain in accuracy.

4. Implicit interfacial method

To overcome the limitations imposed by the Courant condition, we have developed an efficient, fully impli-
cit, time-integration algorithm for interfacial dynamics in Stokes flow. Our method is based on a mathemat-
ically rigorous combination of implicit schemes with our Jacobian-free three-dimensional Newton method
[12], and thus it has strong stability properties which permits the utilization of very large time steps.

The interfacial evolution is determined by the time integration of the kinematic condition at the interface x
used in the general form
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xnþ1 ¼
xnþ1 ¼
xnþ1 ¼
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P. Dimitrakopoulos / Journal of Computational Physics 225 (2007) 408–426 411
dx

dt
¼ a � ðu � nÞnþ U tt ð10Þ
where the first term of the surface derivative a denotes the contribution of the normal interfacial velocity ðu � nÞ
while the second term denotes the contribution of some velocity Ut tangential to the interface.

The basic integration scheme is the A-stable, first-order, implicit Euler scheme
xðt þ DtÞ ¼ xðtÞ þ Dtaðt þ DtÞ ð11Þ

which relates the unknown interfacial shape at time ðt þ DtÞ with the known shape at time t and the surface
derivative aðt þ DtÞ of the unknown interface. The backward differentiation formulas shown in Table 1 utilize
the known interfacial shapes from previous times to achieve higher-order accuracy. These multi-step schemes
may be written in the form
xðt þ DtÞ ¼ xðtÞ þ jDtPþ jDtaðt þ DtÞ ð12Þ

where j is a known scalar coefficient for each method while the vector P describes a known quantity from
previous time steps. We note that, these schemes have very good stability properties, even though they are
not A-stable [6].

To derive an efficient, fully-implicit, time-integration algorithm we combine the implicit formula with our
Newton method for interfacial dynamics in Stokes flow [12]. We emphasize that this way the resulting algo-
rithm preserves the stability properties of the corresponding implicit formula, e.g. Euler or backward differen-
tiation method [6,13,17]. Our implicit time-integration algorithm is based on a Jacobian-free integration of the
kinematic condition at the interface, Eq. (10), by employing boundary perturbations involving the unknown
shape xðt þ DtÞ. The analysis presented below is similar to that employed for the determination of equilibrium
interfaces in Stokes flow via our Newton method; the interested reader is referred to our earlier publication for
more details on the Newton method [12].

During the k iteration of the Newton method, let dkðn; gÞ be the point-by-point displacement, along a pre-
scribed direction pðn; gÞ, between the unknown interface xkðt þ DtÞ and the (now known) interface xk�1ðt þ DtÞ
of the previous Newton iteration, i.e.
xkðt þ DtÞ ¼ xk�1ðt þ DtÞ þ dkp ¼ xðtÞ þ
Xk�1

j¼1

dj

 !
pþ dkp ð13Þ
where we use the known interface xðtÞ at time t as the initial estimate of the Newton iteration for the time
ðt þ DtÞ.

All geometric and physical variables on xkðt þ DtÞ may be expressed as functions of the unknown displace-
ment dkðn; gÞ via boundary perturbations involving the two interfacial shapes above. For example, the normal
vector and curvature may be written as
nk ¼ nk�1 þN ðdÞ þOðd2Þ ð14Þ
ð$ � nÞk ¼ ð$ � nÞk�1 þKðdÞ þOðd2Þ ð15Þ
while the interfacial velocities and forces of the fluid inside the interface (i ¼ 1) or the surrounding fluid (i ¼ 2)
may be written as
uk
i ¼ ui þUiðdÞ þOðd2Þ ð16Þ

f k
i ¼ f i þFiðdÞ þOðd2Þ ð17Þ
1
ard differentiation (BDF) methods of second to fourth order

1
3 ð�xn�1 þ 4xn þ 2Dtanþ1Þ
1

11 ð2xn�2 � 9xn�1 þ 18xn þ 6Dtanþ1Þ
1

25 ð�3xn�3 þ 16xn�2 � 36xn�1 þ 48xn þ 12Dtanþ1Þ
bscripts ðnþ lÞ, where l ¼ 1; 0;�1; . . ., denote quantities evaluated at times ðt þ lDtÞ [6].
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The associated linear functions of displacement, i.e. N , K, Ui and Fi, are given in Ref. [12]. We emphasize
that in Eqs. (16) and (17), ui and fi are the velocities and forces on the known surface xk�1ðt þ DtÞ when the
interface is xkðt þ DtÞ. The flow over the interface xkðt þ DtÞ may be described as an integral over the known
surface xk�1ðt þ DtÞ,
Table
Diago

Second
xs1 ¼ x

xnþ1 ¼

Third-
xs1 ¼ x

xs2 ¼ x

xnþ1 ¼

Fourth
xs1 ¼ x

xs2 ¼ x

xs3 ¼ x

xnþ1 ¼
Note
b0 ¼ 0
b2 ¼ ð
ðu2 þ ku1 � 2u1Þðx0Þ ¼ �
1

4pl

Z
xk�1

½S � ðf 2 � f 1Þ � lT � ðu2 � ku1Þ � n�ðxÞdS ð18Þ
Similar generalized boundary integral equations hold in the presence of solid boundaries and for drop/cell sus-
pensions in all possible types of domains, i.e. infinite, semi-infinite or closed systems [12].

By combining the boundary conditions on the interface xkðt þ DtÞ, i.e. equal velocities uk
1 ¼ uk

2 and known
force jump ðf k

2 � f k
1Þ, with the perturbation equations (16) and (17) above, the generalized boundary integral

equation, Eq. (18), may be solved for the unknown displacement dkðn; gÞ if a condition for the normal velocity
of the unknown interface xkðt þ DtÞ is given. For equilibrium interfaces this condition is the requirement of
zero normal interfacial velocity, ðu � nÞkðt þ DtÞ ¼ 0 [12].

For transient dynamics, the condition for the normal velocity of the unknown interface xkðt þ DtÞ is derived
by employing the implicit time-integration scheme, i.e. by combining Eqs. (13) and (12) we obtain
ðu � nÞk ¼
Xk�1

j¼1

dj þ dk

" #
p � nk

jDt
�P � nk ð19Þ
Observe that the kinematic condition above is independent of the tangential velocity Ut appearing in the sur-
face derivative a (see Eq. (10) above). However, Ut is utilized in the determination of the interfacial shape,
since during the Newton iteration the points xðn; gÞ are advanced along the prescribed direction pðn; gÞ which
in general is different from the normal direction of the anticipated shape xðt þ DtÞ (see also Eq. (13)).

Having developed an efficient fully-implicit dynamics algorithm involving multi-step (one-stage) implicit
formulas (e.g. Euler and backward differentiation schemes), it is straightforward to extend it to sequential
multi-stage implicit formulas such as the diagonally implicit Runge–Kutta schemes (DIRK) shown in Table 2.
We emphasize that each stage of these schemes is independent of the following ones, and thus they are
evaluated sequentially (as it happens with the corresponding explicit Runge–Kutta schemes). These high-order
implicit schemes have excellent stability properties being at least A-stable; in particular, the second- and third-
order DIRK schemes are L-stable while the fourth-order DIRK is A-stable [2,6].

Our implicit algorithm requires 2–3 Newton iterations for each time step to achieve suitable convergence;
each Newton iteration requires a maximum of three boundary integral solutions of systems with the same size
as the standard explicit algorithms (see p. 197 in Ref. [12]). Therefore, one implicit time step is less than 10
times more expensive than the corresponding explicit time step. This difference is easily covered by the ability
to use much larger time steps, even of Oð1Þ, as we discuss in Section 6.
2
nally implicit Runge–Kutta (DIRK) methods of second to fourth order

-order diagonally implicit Runge–Kutta (DIRK2)

n þ Dta0aðxs1Þ
xn þ Dt½ð1� a0Þaðxs1Þ þ a0aðxnþ1Þ�

order diagonally implicit Runge–Kutta (DIRK3)

n þ Dtb0aðxs1Þ
n þ Dt½0:5ð1� b0Þaðxs1Þ þ b0aðxs2Þ�
xn þ Dt½b1aðxs1Þ þ b2aðxs2Þ þ b0aðxnþ1Þ�

-order diagonally implicit Runge–Kutta (DIRK4)

n þ Dt0:5ð1þ c0Þaðxs1Þ
n þ Dt½�0:5c0aðxs1Þ þ 0:5ð1þ c0Þaðxs2Þ�
n þ Dt½ð1þ c0Þaðxs1Þ � ð1þ 2c0Þaðxs2Þ þ 0:5ð1þ c0Þaðxs3Þ�
xn þ Dt=ð6c2

0Þ½aðxs1Þ þ ð6c2
0 � 2Þaðxs2Þ þ aðxs3Þ�

that xn � xðtÞ, xnþ1 � xðt þ DtÞ while xs1, xs2 and xs3 denote intermediate stages. For DIRK2, a0 ¼ 1�
ffiffiffi
2
p

=2. For DIRK3,
:43586652150846 is the root of the equation 6b3

0 � 18b2
0 þ 9b0 � 1 ¼ 0 in [1/6,1/2] while b1 ¼ ð�6b2

0 þ 16b0 � 1Þ=4 and
6b2

0 � 20b0 þ 5Þ=4. For DIRK4, c0 ¼ 2 cosðp=18Þ=
ffiffiffi
3
p

. [2,6].
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5. Spectral boundary discretization

The fully-implicit time integration for interfacial dynamics in Stokes flow described in Section 4, may be
combined with any existing boundary integral algorithm. In our work, the numerical solution of our implicit
algorithm is achieved through an extension of the spectral boundary element method described in [12,23]. The
initial interface is divided into a moderate number NE of elements as shown in Fig. 1. The geometric variables
on each element are discretized using Lagrangian interpolation in terms of parametric variables n, g on the
square interval ½�1; 1�2, e.g.
Fig. 1
Legend
xðn; gÞ ¼
XNB

i¼1

XNB

j¼1

xðni; gjÞhiðnÞhjðgÞ ð20Þ
where hi is the (NB � 1)-order Lagrangian interpolant polynomial. The physical variables u and f are repre-
sented similarly. The base points ðni; gjÞ for the interpolation are chosen as the zeros of NB-order orthogonal
polynomials; this yields the spectral convergence associated with the orthogonal polynomial expansion.

The boundary integral equations, e.g. Eqs. (7) and (18), admit two different types of points. The collocation
points x0 of the left-hand side where the equation is required to hold and the basis points x of the right-hand
side where the physical variables u and f are defined. The spectral element method as implemented here
employs collocation points of Gauss quadrature, i.e. in the interior of the element. As a result the boundary
integral equation holds even for singular elements where the normal vector is not uniquely defined.

In addition, we use basis points of Gauss–Lobatto quadrature [7]. Owing to this choice, the position is
always continuous on the interface. (Note that our implicit algorithm determines the shape xðt þ DtÞ at the
basis points.) Additional constraints are required at the ends of the elements to enforce continuity of the nor-
mal vector and curvature on the interface. To achieve this, we require continuity of the term ð$ � nÞn at the
edges of the spectral elements; these non-linear constraints are embodied into the interfacial system via line-
arization of the associated terms (see Eqs. (14) and (15) above). As the Newton iteration converges, the inter-
facial shape satisfies the geometrical conditions to any desired numerical accuracy, e.g. the machine precision.

The Gauss-type points may be derived from the Jacobi polynomials P a;b
N where the parametric constants a

and b are greater than �1 [1,7]. Different values of a and b yield diverse orthogonal polynomials, e.g.
a ¼ b ¼ 0 yields the Legendre polynomials while a ¼ b ¼ �1=2 produces the Chebyshev polynomials. Similar
to the interior Gauss points, Gauss–Lobatto points (which include the end points ±1) can also be derived from
the Jacobi polynomials; the distribution of the interior points is again controlled by the associated parameters
a and b. Note that equal values of the two parameters, a and b, result in points symmetric around zero in the
interval ½�1; 1�. As the value of a ¼ b approaches �1, the roots are closer to the ends of the interval; larger
values produce roots closer to the center of the interval ½�1; 1�.

The discretized expressions for the geometry and the physical variables are substituted into the boundary
integral equations yielding a linear system of algebraic equations u ¼ Af þ Bu. The system matrices A and B
are defined as integrals of the kernels S and T and the basis functions over the set of the surface elements. The
. Spectral boundary element discretization of a spherical droplet into NE ¼ 6 elements. The figure illustrates Gauss–Lobatto
re distribution of nodal lines with NB ¼ 10 spectral points in each direction.
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numerical integration is performed by Gauss–Legendre quadrature with the aid of variable transformations.
Owing to the singularity in the kernels, special care must be taken to ensure the accurate numerical evaluation
of these integrations as described in [23]. Due to their small size for the problems studied in this paper, the
discretized systems of equations are solved via direct solvers from the LAPACK software library.

Our numerical code has the ability to exploit the symmetry planes of a specific interfacial problem. Exploit-
ing m symmetry levels reduces the memory requirements by a factor of 4m, the computational time for deter-
mining the system matrices by a factor of 2m, and the solution time via direct system solvers by factor of 8m. In
addition, our numerical code has been parallelized on shared-memory multiprocessor computers (such as the
SGI Origin 2000 and IBM pSeries 690) by employing OpenMP directives for the calculation of the system
matrix, and highly optimized parallel routines from the LAPACK system library for the solution of the dense
system matrix. Multiprocessor runs exploit the parallel nature of calculating the system matrices by the
boundary integral equations, e.g. Eqs. (7) and (18), resulting in an overall very good parallel efficiency as
we discuss in Ref. [35].

6. Properties of implicit spectral interfacial method

To verify the accuracy and the (expected strong) stability properties of our implicit algorithm, we have con-
ducted extensive tests for droplets and bubbles suspended freely in linear flows. To determine the droplet
deformation with time we monitor the droplet’s longest and shortest semi-axes, L and S, respectively, as well
as Taylor’s deformation parameter
D ¼ L� S
Lþ S

ð21Þ
These semi-axes are determined as the maximum and minimum distance from the droplet’s centroid to the
interface by employing a Newton method for the optimization problems. We also calculate the drop’s length
Li, width Si and depth Wi as the semi-axes of the ellipsoid which has the same inertia tensor as the droplet. In
addition, we monitor the orientation angle of the drop hx defined as the angle between the longest semi-axis L

and the flow direction, i.e. the x-axis.
Our results are in very good agreement with experimental findings of Bentley and Leal [4], and of Ha and

Leal [16], for the subcritical and supercritical deformation of droplets in planar four-roll mill flows as dis-
cussed in more detail in Section 7. They also show very good agreement with the experimental findings for
the transient evolution in simple shear flow reported in Figs. 5 and 6 of Ref. [15], and are in excellent agree-
ment with the corresponding computations by Pozrikidis included in Ref. [15].

Our computations are in excellent agreement with the analytical predictions of Wetzel and Tucker [36] for
the transient evolution of droplets with zero interfacial tension in shear and planar extensional flows reported
in Fig. 1 of the analytical study. In particular, we considered the evolution of a droplet with k ¼ 3 over the
time interval [0,5] in simple shear flow, and a drop with k ¼ 18:6 over the time interval [0, 6] in planar exten-
sional flow, as in Fig. 1 of Ref. [36]. By employing Dt ¼ 0:1 and our adaptive mesh reconstruction (described in
the next section), our numerical results for the droplet’s length, width and depth agree over at least four sig-
nificant digits with those of the analytical study.

Our algorithm, based on the backward differentiation and diagonally implicit Runge–Kutta schemes, has
very strong stability properties even for Dt ¼ Oð1Þ. As test problems, we have monitored the deformation of
initially spherical droplets with very dense grids under shear and extensional flows and for several capillary
numbers and viscosity ratios. (In particular, we discretized the initial spherical droplets into N E ¼ 54; 66 spec-
tral elements and utilized N B ¼ 9–12 basis points, resulting in a total number of spectral points N ¼ N EN 2

B in
the range 4374–9504). For both types of implicit schemes, the required time step Dt is independent of the grid
spacing Dx and the capillary number Ca. Most importantly, the same is true when we define droplets with
regular grids (i.e. N E P 6) which are employed for the study of interfacial deformation.

We emphasize that we can easily achieve sufficient accuracy even with large time steps by employing
high-order formulas such as the third- and fourth-order backward differentiation and diagonally implicit
Runge–Kutta schemes. As test problems, we have determined the evolution of the interfacial shape for various
viscosity ratios k and capillary numbers Ca, and for different time steps, usually Dt ¼ 10�3; 10�2; 10�1. In all
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cases, the high-order schemes mentioned above were able to produce a relative error 610�3 at all times. (The
accuracy was verified by employing both our explicit and implicit algorithms.)

These test problems show that our implicit algorithm removes the penalty of small time steps associated with
the Courant condition, Eq. (9), as expected due to the rigorous combination of the implicit formula with our
Newton method.

Our implicit algorithm may also be employed to study physically stiff interfacial problems. We note that a
stiff problem may be understood as the one involving two well separated time scales. To avoid numerical insta-
bility, any explicit algorithm needs to resolve successfully the small time scale (by employing small enough
time steps) over the long period defined by the large time scale of the stiff problem. This results in a very large
number of unnecessary time steps without any gain in accuracy [6,17]. On the other hand, all stiff interfacial
problems are computationally simple for our algorithm owing to its (fully) implicit nature.

To show this issue, we have studied the dynamics of drop deformation near the critical conditions, i.e. near
the flow rate at which equilibrium interfacial shapes cease to exist. As discussed in Refs. [5,24], near the critical
point the drop evolves on two distinct time scales: a short one due to the surface tension relaxation and a long
one which diverges to infinity at the critical point. In contrast to explicit algorithms where a small time step
and a large number of steps are required to study this problem, our implicit algorithm produces stable and
accurate results for the large time step of Dt ¼ 0:1 as shown in Fig. 2a. The time evolution of the drop defor-
mation D is shown in Fig. 2b for a subcritical and a supercritical capillary number. Both curves were produced
by employing a time step Dt ¼ 0:1 while we also include our results for Dt ¼ 1. We note that even the large
time step Dt ¼ 1 results in a numerically stable (and quite accurate) evolution for both subcritical and super-
critical conditions. (Note that for subcritical flow rates, after equilibrium is reached, the numerical accuracy
does not depend on the time step Dt.)

An additional benefit of our implicit method is the fact that due to the linearization inherent in the involved
Newton method, any non-linear boundary condition can be easily embodied into our algorithm and solved
directly along with the interfacial evolution without the need for a post-solution treatment/correction. As
an example, we refer to the non-linear relation between the contact line speed and the dynamic contact angle
for the case of fluid volumes sliding on solid substrates [8,14,22].

The discussion so far in this section describes the properties of our fully-implicit algorithm independently of
the boundary element method employed for its solution. The specific solution of our implicit algorithm utilized in
our work is based on our spectral boundary element method [12,23] and thus it exploits all the benefits of the spec-
tral methods, i.e. high-order interpolation with exponential convergence and numerical stability with increasing
number of spectral points [18,21], along with the versatility of the boundary element method, i.e. the ability to
handle the most complicated geometries. In addition, it is not affected by the disadvantage of the spectral methods
used in volume discretization; namely, the requirement to deal with dense systems, because in boundary integral
formulations the resulting systems are always dense, independent of the form of the discretization.

The exponential convergence in the numerical accuracy as the number of the employed spectral points
N ¼ NEN 2

B increases is clearly evident at the geometric properties of a given shape such as the interfacial cur-
vature shown in Fig. 3. The exponential convergence of our spectral algorithm is in direct contrast to the com-
mon linear or quadratic convergence associated with low-order algorithms, e.g. [3,9,19,38].

The exponential convergence in the numerical accuracy is also evident for the dynamic evolution of the
interfacial shape as shown in Fig. 4. We emphasize that the difference in the interfacial accuracy between
our spectral algorithm and low-order methods is dramatic since the latter commonly achieve linear conver-
gence by increasing the number of the employed grid points [9,20]. Therefore, to achieve a desired accuracy,
our high-order method may not require as dense a numerical grid as low-order boundary element methods.

As a closure to this section, we note that one exception in our discussion of the limitations of the explicit bound-
ary integral methods (presented earlier in Section 3) is the recent algorithm of Bazhlekov et al. [3]. By recognizing
that the numerical instability associated with the Courant condition in a grid point x results mainly from the time
discretization of the force jump, Eq. (5), in the grid points near x, the authors implemented a multiple step time-
integration scheme. In particular, the force jump was updated in accordance with the limitations imposed by the
Courant condition while the interfacial velocity, and thus the interfacial shape, was updated in larger time inter-
vals Dt (see Section III.E of the earlier study [3]). According to Ref. [3] the multiple step time-integration scheme
permits utilizations of time steps 10 times larger than the stability limit for accurate calculations.
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Fig. 2. (a) Dynamics near the critical point: maximum normal velocity versus deformation D for a droplet with viscosity ratio k ¼ 0:5 in a
planar extensional flow u1 ¼ Gðx;�y; 0Þ. The capillary number is Ca ¼ 0:05; 0:1; 0:13; 0:133; 0:134; 0:1341; 0:1342; 0:1345; 0:138; 0:15;
0:16; 0:2. These curves were generated by employing the third-order diagonally implicit Runge–Kutta scheme (DIRK3) with Dt ¼ 0:1. The
accuracy was verified by employing smaller time steps with both our explicit and implicit algorithms. The critical capillary number (i.e.
Ca � 0:1342) is in excellent agreement with experimental findings [4]. (b) Time evolution of the droplet deformation D for the subcritical
Ca ¼ 0:1 and the supercritical Ca ¼ 0:15. Both curves were produced by employing DIRK3 with Dt ¼ 0:1; also included as diamond and
circular points the corresponding results for Dt ¼ 1.

Fig. 3. The maximum absolute error in the computed curvature versus the number of spectral points N ¼ N EN 2
B for different spheroids:

——, a ¼ b ¼ c ¼ 1; - - - -, a ¼ b ¼ 1; c ¼ 0:4; ––––, a ¼ 1; b ¼ c ¼ 0:4. (a, b and c are the spheroid semi-axes). The exact value was used to
determine the numerical error.
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Thus, the algorithm of Bazhlekov et al. [3] seems to do a good work with respect to the limitations on the
employed time step imposed by the Courant condition. However, it is unclear if that algorithm is completely
unaffected by the Courant condition, i.e. if the employed time step is independent of the grid spacing Dx and
the capillary number Ca as it happens with our methodology due to its rigorous combination of implicit for-
mulas with our Newton method. In addition, we note that the algorithm of Bazhlekov, Anderson and Meijer is
still affected by small physical time scales (such as those near critical conditions) and does not have the advan-
tage of easy incorporation of non-linear boundary conditions.



a b

Fig. 4. Relative error in the computed deformation D, drop length L and width S versus the number of spectral points N ¼ NEN 2
B.

(a) Ca ¼ 0:155, k ¼ 0:2, at time t ¼ 0:5 in a planar extensional flow. (Note that D ¼ 0:292 while the droplet length has been increased by 38%

and its width has been decreased by 24%.) The exponential convergence shown was generated by employing NE ¼ 14 spectral elements and
varying the number of basis points NB from 5 to 14 with Dt ¼ 0:01. (b) Ca ¼ 0:25; k ¼ 0:056, at time t ¼ 1 in a planar extensional flow. (Note
that D ¼ 0:5 while the droplet length has been increased by 86% and its width has been decreased by 39%.) The exponential convergence
shown was generated by employing NE ¼ 22 spectral elements and varying the number of basis points NB from 6 to 14 with Dt ¼ 0:01. (In
both cases, the results for NB ¼ 15 were used to determine the numerical error.)
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7. Dynamics of free-suspended droplets

In this section we consider the dynamics of free-suspended droplets at both subcritical and supercritical
flow rates. The main purpose of this section is to establish the ability of our implicit algorithm to determine
accurately the interfacial shape by utilizing large time steps independent of the Courant condition, Eq. (9). We
also show the ability of our spectral boundary element method to accurately determine complicated interfacial
morphologies including elongated shapes with pointed edges or interfacial necks.

7.1. Subcritical droplet evolution

In this subsection, we study the droplet evolution at subcritical capillary numbers where the drop reaches
equilibrium after an initial transient evolution. In particular, we investigate the time evolution of the droplet
length L, width S and deformation D for different viscosity ratios including low- and high-viscosity droplets.
We also compare the equilibrium shapes from our numerical results with the experimental findings of Bentley
and Leal [4]. To do this, we study droplet deformation in planar four-roll mill flows u1 ¼ ðux; uy ; 0Þ with
ux ¼
G
2
½ð1þ afÞxþ ð1� afÞy�

uy ¼
G
2
½ð�1þ afÞx� ð1þ afÞy�

ð22Þ
for several viscosity ratios and capillary numbers reported in the experimental study.
The measurement of the droplet dimensions in the experimental work [4] was achieved via processing of

rather low-resolution digital images which produced an average deviation of 5% with respect to measurements
of high-resolution (film) photographs [31]. In all cases we have studied, our numerical results are in excellent
agreement with the experimental findings (i.e. the two determinations are very close or within the 5% devia-
tion) or in very good agreement with the experimental results (i.e. the two determinations are quite close).

In all cases presented in this subsection (as well as in Section 7.2), the initial shape at time t ¼ 0 corresponds
to a spherical droplet, i.e. we consider the problem where a steady flow is introduced into the system for all
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times t > 0. Our preference is to discretize this spherical shape into N E ¼ 6 equal-size spectral elements as
shown in Fig. 1. The results we present are derived by employing NB ¼ 10 basis points and the third-order
diagonally implicit Runge–Kutta scheme (DIRK3) with Dt ¼ 0:1 (unless noted otherwise). The accuracy of
our results was verified by employing smaller time steps (usually Dt ¼ 0:05; 0:02; 0:01), basis points
NB ¼ 7; . . . ; 13 as well as other implicit schemes. The three-dimensional droplet shapes presented in this sub-
section as well as in Section 7.2 show the actual spectral grid used for the interfacial solution.
a

b

c

d

Fig. 5. Subcritical evolution of a droplet withk ¼ 0 : 00108 in a planar four-roll mill ”ow with af… 0 : 8. (a) Time evolution of the droplet
deformation D and its major L andminor S semi-axesfor Ca … 0 : 263. (b) Droplet pro�le at equilibrium for Ca … 0 : 263 ; 0 : 321.(c)Droplet

shapeatequilibriumfor Ca… 0 : 263 fromourcomputationsandtheexperimentalworkofBentleyandLeal [4] reportedintheir Fig.7.
(d)Asin(c)butfor Ca… 0 : 321.
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In strong flows, both at subcritical conditions presented in this subsection as well as at supercritical condi-
tions presented in Section 7.2, the droplet may elongate significantly. Thus, the original spectral discretization
fNE;NBg may not be sufficient to describe a very deformed interfacial shape. To resolve this issue, we utilize
the adaptive mesh reconstruction procedure presented in our earlier publication on our explicit interfacial
spectral boundary element method [34]. This procedure divides or unites the spectral elements during the tran-
sient evolution based on their relevant length but keeps fixed the number of basis points, NB, defined on each
element. The goal of our adaptive mesh reconstruction is to produce a reasonable spectral element discretiza-
tion of the interfacial shape with respect to the element’s arc lengths and/or the variation of curvature on it.
Thus, as relevant lengths of a spectral element are regarded its arc length L1 and its curvature length L2 along
each curvilinear direction,
L1 ¼
Z

elem

d‘; L2 ¼ Rref

Z
elem

j$ � njd‘ ð23Þ
where d‘ is the arc length and Rref some reference radius of curvature. (For problems involving surfaces in
close contact, another relevant length may be considered associated with the surfaces’ gap [9,40].)

For example, the moderately deformed interfacial shapes shown in Fig. 6(c) are determined with N E ¼ 14
elements produced by division of each of the two edge elements of the original NE ¼ 6 discretization into five
new elements during the transient evolution. The same happens for the more elongated shapes shown in Fig. 5
where more divisions of the edge elements were employed.

Fig. 5 shows the subcritical evolution of a low-viscosity droplet with k ¼ 0:00108 in a planar four-roll mill flow
with af ¼ 0:8. The time evolution of the droplet length L, width S and deformation D is shown in Fig. 5a, while
Fig. 5b–d shows the profile and shape of the droplet at equilibrium for Ca ¼ 0:263; 0:321. The equilibrium inter-
facial shapes and the corresponding values of the deformation D ¼ 0:575 (for Ca ¼ 0:263), the droplet length
L ¼ 2:91 (for Ca ¼ 0:321) and orientation angle hx ¼ �2:4;�2:5 are in very good agreement with the experimen-
tal results of Bentley and Leal [4] reported in their Fig. 7, i.e. DBL ¼ 0:531; LBL ¼ 2:70 and hBL

x ¼ �1:5;�2.
For the low-viscosity droplet presented in Fig. 5, we note the appearance of pointed edges especially at the

higher capillary number Ca ¼ 0:321. Our spectral method along with its adaptive mesh procedure can accu-
rately describe these tips without the need to accumulate a very large number of grid points near the edges.

The subcritical evolution of a high-viscosity droplet with k ¼ 14:4, for af ¼ 0:4 and Ca ¼ 0:172, is shown in
Fig. 6. The time evolution of the droplet deformation D is shown in Fig. 6a while the interfacial profile and
shape are shown in Fig. 6b and c. The equilibrium interfacial shapes and the corresponding values of the
deformation D ¼ 0:329 and orientation angle hx ¼ �16:8 are in very good agreement with the experimental
results of Bentley and Leal [4] reported in their Fig. 13, i.e. DBL ¼ 0:337 and hBL

x ¼ �19.
For high-viscosity droplets, the time necessary to reach equilibrium is much longer compared to that for

equal- and low-viscosity droplets. An estimate for this time may be given by the surface tension time scale
incorporating the influence of the viscosity ratio, e.g. sc ¼ ð1þ kÞla=c ¼ ð1þ kÞCasf . The term showing the
influence of the viscosity ratio, i.e. ð1þ kÞ, is only asymptotically correct at the extreme limits k! 0 and
k!1; for intermediate values of k, the influence of the viscosity ratio is more complicated and may be
affected by the flow type and other parameters of the specific interfacial system.

As shown in Fig. 6a for the determination of the deformation of the high-viscosity droplet we employed
several time steps, i.e. Dt ¼ 0:1; 1; 5; 25. Observe that the first three time steps produce accurate results at
all times. The larger time step Dt ¼ 25 produces inaccurate results during the transient droplet evolution
(see its prediction for time t ¼ 25) and accurate prediction of the steady-state conditions where the accuracy
of the computational results does not depend on the time step (but only on the space discretization). In addi-
tion, observe that even the large time step Dt ¼ 25 produces stable evolution towards the correct equilibrium.

By studying our numerical results for different time steps, such as those included in Figs. 6a and 2b, the
following question arises: for a specific subcritical evolution, what is the largest time step Dt where accurate
solution is obtained at all times, especially far from equilibrium? Our numerical results suggest that when we
employ as a time step a small fraction of the actual time T necessary to reach equilibrium, we always obtain
accurate results. For example, for the case shown in Fig. 6a T � 50; in this case by utilizing Dt = 0.1 T or smal-
ler, the numerical solution is accurate at all times, e.g. even for the first few time steps. On the other hand, close
to equilibrium much higher time steps may successfully be employed.
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These conclusions may be employed for the efficient and accurate determination of slow dynamic processes
such that of the subcritical evolution of high-viscosity droplets. In particular, we have the ability to start with a
small enough time step so that we determine accurately an initial fast evolution; then the time step of our
implicit method can be increased gradually as the evolution becomes less rapid; near equilibrium quite large
time steps can be employed to cover any desired time period. (As an example, we have implemented this
Fig. 6. Subcritical evolution of a droplet withk¼14:4 in a planar four-roll mill flow withaf ¼0:4 and forCa¼0:172. (a) Time evolutionthe droplet deformationDfor different time steps: ——,D t¼0:1 in [0,20]; - - - -,D t¼1 in [0,100];},D t¼5;s;D t¼25. (Note that forD t¼5;25 our computations cover the time period [0,500] even though we present results only in [0,200].) The steady-state shape was alsodetermined by employing one large time step withD t¼104

and the implicit Euler method. (b) Droplet profile at equilibrium. (c) Dropletns and the experimental work of Bentley and Leal[4]reported in their Fig. 13.(2007) 408–426
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procedure for the determination of the evolution of the high-viscosity droplet shown in Fig. 6.) We emphasize
that this procedure may be employed for the subcritical drop evolution at any viscosity ratio.

As an additional issue involving subcritical droplet evolution, we note that the equilibrium shape can be
directly calculated by employing our implicit spectral method with a very large time step. This shows that in this
case, our implicit method reverses to our Newton method for equilibrium shapes, as expected. In this case any
implicit scheme may be employed for the accurate determination of the equilibrium conditions. The most efficient
way is to implement the implicit Euler method as we have done for the high-viscosity droplet shown in Fig. 6.

As a closure to this subsection, we emphasize that the employed spectral discretization is sufficient to pro-
duce a small enough relative error (e.g. 610�3); however it is not necessary for this. In most cases, a smaller
number of spectral elements and/or a smaller number of basis points may also achieve the desired accuracy.
As an example, we mention that, for the case Ca ¼ 0:263 shown in Fig. 5, identical time evolution and equi-
librium shape was achieved by employing NE ¼ 14 spectral elements instead of N E ¼ 22 elements shown in
Fig. 5c. (The coarser discretization was produced by setting a higher limit for element division resulting in
a single division of the two edge elements during the transient evolution.)

7.2. Supercritical droplet evolution

In this subsection, we study the droplet evolution at supercritical capillary numbers to show the ability of
our implicit method to determine efficiently and accurately elongated droplet shapes. Similarly to Section 7.1,
 Fig. 7. Supercritical evolution of a droplet with005 in a planar planar extensional flow for 303. (a) Time evolution of the

droplet deformation and its major and minor semi-axes. (b) Droplet profile at times5. (c) Droplet shape at



we investigate the time evolution of the droplet length L, width S and deformation D for different viscosity
ratios. We also compare our numerical results with the experimental results of Ha and Leal [16] who studied
drop deformation in a planar extensional flow u1 ¼ Gðx;�y; 0Þ.

Fig. 7 shows the supercritical evolution of a low-viscosity droplet with k ¼ 0:005 in a planar extensional
flow with Ca ¼ 0:303. The time evolution of the droplet length L, width S and deformation D is shown in
Fig. 7a. In addition, Fig. 7b shows the droplet profile for several times while the droplet shape at time
t ¼ 2:5 is shown in Fig. 7c. We note that our numerical results are in excellent agreement with the experimental
findings of Ha and Leal [16] reported in their Fig. 5a.

As the drop elongates with time, tips appear at the edges of the drop as shown in the droplet profiles in
Fig. 7b. At time t ¼ 2:5 the droplet length is L � 3:2 and thus the droplet shape included in our Fig. 7c closely
corresponds to the first photo included in Fig. 5a of Ref. [16]. Observe that our numerical shape is in excellent
agreement with the experimental photo. We note that the accurate determination of tip formation in three-
dimensional interfaces constitutes a challenging computational problem.

We consider now the transient evolution of a droplet with k ¼ 0:209 for the supercritical capillary number
Ca ¼ 0:163 shown in Fig. 8a. Note that after the initial fast increase of the droplet length, the rate of elonga-
tion slows down, while later a very sharp increase in the droplet length is observed. Fig. 8b and c shows the



Fig. 9. Supercritical evolution of a droplet with k ¼ 0: 209 in a planar extensional flow forCa ¼ 1: 55. (a) Time evolution of the dropletdeformation D , lengthL , widthS and depth W

i.iandicoincidealong the plane z ¼ 0 at timet ¼ 1. (c) As in (b) but for the plane y ¼ 0.
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droplet profile and shape at several times. Observe that later in time a thin neck is created in the middle of the
drop as shown in the drop profile for t ¼ 8:5 included in Fig. 8b. Our numerical results are thus consistent with
the experimental findings of Ha and Leal [16] reported in their Fig. 2a.

The three-dimensional drop shape for t ¼ 8:2 included in Fig. 8c shows three narrow rows of (four) spectral
elements in the middle of the droplet. To reduce the computational cost, our algorithm can unite them into
one row of elements around the waist of the droplet. In this experiment, we have avoided to do this, to show
clearly that our implicit method is not affected by the Courant condition when an accumulation of grid points
occurs locally on the drop interface.

In Fig. 8a we also include the time evolution of the drop’s lengths, Li, Si and Wi, determined as the semi-axes of
the ellipsoid which has the same inertia tensor as the droplet. A comparison of these lengths with the droplet’s true
longest and shortest semi-axes, L and S, reveals that for this case the quantities based on the inertia tensor over-
estimate the actual droplet dimensions at high elongation. This difference is more severe for the length Li which
overestimates rather significantly the drop’s length L. On the other hand, the width Si agrees rather well with the
drop’s width S until very late in the transient evolution where a thin neck is created in the middle of the drop.
a

b

c

(The curves forL Swith those forL and S , respectively.) (b) Droplet profile
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We emphasize that this conclusion applies to all extended shapes we have presented so far in this sec-
tion, at both subcritical and supercritical conditions. Our results for the rest cases of this section show that
it is the length Li which deviates from the true drop length L. In particular, for elongated shapes with
pointed edges or tips, like those for the low-viscosity drops presented in Figs. 5 and 7, Li underestimates
the drop length. On the other hand, for elongated shapes with rounded edges like those for the moderate-
and high-viscosity drops presented in Figs. 6 and 8, Li overestimates the true drop length L. Both varia-
tions are consistent with the average nature of the inertia tensor whose determination involves the entire
droplet surface.

Thus, one should be careful when using the lengths based on the inertia tensor to represent the actual drop’s
dimensions. On the other hand, the two ways to calculate the drop’s length (e.g. discussed at the beginning of
Section 6) may be used to determine until which extension the droplet shape can be approximated with an
ellipsoid. For example, for the case depicted in Fig. 8, this happens for times t K 3 where the inertia tensor
lengths, Li and Si, agree with the true droplet lengths, L and S.

Considering again Fig. 8a, we observe that while the drop’s length and width start to increase or decrease
immediately after the initiation of the flow, the drop’s depth Wi is practically constant at early times and then
shows a slow decrease. This points out to the dynamics of this specific flow which are different in the x, y and z

directions. At supercritical flow rates, a planar extensional flow u1 ¼ Gðx;�y; 0Þ tends to rapidly increase the
drop length in the x-direction, decrease its width in the y-direction, while initially may keep unchanged the
drop depth in the z-direction.

To investigate further this issue, we have considered droplets in higher flow rates. In Fig. 9 we present the
transient evolution of a droplet with k ¼ 0:209 for the supercritical capillary number Ca ¼ 1:55. This flow rate
corresponds to Ca ¼ 10Cac based on our determination of the critical capillary number Cac � 0:155 (which is
in agreement with the experimental findings of Bentley and Leal [4] reported in their Fig. 28). As shown in
Fig. 9a, while the droplet’s length and width show a significant change, the depth Wi of the droplet is prac-
tically constant until t � 0:8. This results in the creation of temporary lamellar shapes as reported in Ref.
[10]. By comparing the drop’s profiles shown in Fig. 9 with those presented in Fig. 8, it is obvious that the
increased flow rate reported in Fig. 9 (i.e. Ca ¼ 1:55) is accompanied with the appearance of pointed edges
which are in distinct contrast to the rounded ends found for Ca ¼ 0:163.

8. Conclusions

In this paper we have developed an efficient, fully-implicit, three-dimensional interfacial dynamics algo-
rithm based on a mathematically rigorous combination of implicit formulas with our Jacobian-free Newton
method. The resulting algorithm has several desirable properties which are unique since the introduction of
the boundary integral equations for interfacial dynamics in Stokes flow 30 years ago by Acrivos and cowork-
ers [28,37]. First, our implicit interfacial algorithm removes the penalty of small time steps associated with the
Courant condition, Eq. (9), by making the employed time step Dt independent of the space discretization Dxmin

and the capillary number Ca. In addition, physical stiffness does not affect our implicit algorithm. Further-
more, due to the linearization inherent in the involved Newton method, any non-linear boundary condition
can be easily embodied into our algorithm and solved directly along with the interfacial evolution without
the need for a post-solution treatment/correction.

In this work the numerical solution of our implicit algorithm is achieved through the spectral boundary
element method [12,23] which makes the combined methodology the only available three-dimensional high-
order implicit interfacial algorithm. However, we emphasize that our fully-implicit time integration for inter-
facial dynamics in Stokes flow may be combined with any existing boundary integral algorithm.

Our fully-implicit methodology constitutes a new approach for the study of interfacial dynamics in Stokes
flow of a broad range of physical systems including multiphase flows, drops, bubbles, capsules and biological
cells. In addition, our methodology is not restricted to Stokes flow only but it can be directly employed to any
system involving deformable interfaces governed by boundary integral equations such as the thermocapillary
or electro-magnetic interfacial motion, and solidification. Thus, our algorithm is particularly suited for the effi-
cient study of a variety of physical problems in regular- and small-scale systems, such as porous media, micro-
fluidics and biomechanics.
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